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ABSTRACT 

Multi-robot bounding overwatch requires timely coordination of robot team 
members. Symbolic motion planning (SMP) can provide provably correct solutions 
for robot motion planning with high-level temporal logic task requirements. This 
paper aims to develop a framework for safe and reliable SMP of multi-robot 
systems (MRS) to satisfy complex bounding overwatch tasks constrained by 
temporal logics. A decentralized SMP framework is first presented, which 
guarantees both correctness and parallel execution of the complex bounding 
overwatch tasks by the MRS. A computational trust model is then constructed by 
referring to the traversability and line of sight of robots in the terrain. The trust 
model predicts the trustworthiness of each robot team’s potential behavior in 
executing a task plan. The most trustworthy task and motion plan is explored with 
a Dijkstra searching strategy to guarantee the reliability of MRS bounding 
overwatch. A robot simulation is implemented in ROS Gazebo to demonstrate the 
effectiveness of the proposed framework. 
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1. INTRODUCTION 

 Bounding overwatch is a process of alternating 
movement of coordinated teams to move forward 
under potential adversaries [1]. As members in a 
team take an overwatch posture, other members 
advance to cover. In robotic bounding overwatch, 
teams of (semi)autonomous robotic ground 

vehicles are coordinated to perform such tasks 
autonomously while a human operator supervises 
the task and intervenes if necessary. The process of 
a two-robot bounding overwatch is illustrated in 
Fig. 1. Generally, there are two variants of 
bounding overwatch. One method is the successive 
bounding overwatch that part of robot team 
members moves, halt and wait for the remaining 
members to reach the current overwatch point. It is 
used when maximum security and ease of control 
are required. The other method is the alternating 
bounding overwatch that part of robot team 
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members moves, halt and wait for the remaining 
members to pass the current overwatch point. It is 
used when security and more rapid advancement 
are required.  

 
Beyond reachability to goal destinations, 

temporal logic constraints (such as sequence of 
actions, synchronized coordination between robots) 
can also be critical for complex motion planning 
problems in bounding overwatch. However, current 
bounding overwatch planning is always based on a 
fixed sequence in visiting the overwatch points, 
ignoring the fact that there may exist alternative 
bounding overwatch plans that may satisfy human 
supervisors’ requirements [2, 3]. It is important to 
determine which motion plan to choose for 
bounding overwatch at each step. Traditional 
motion planning such as A* and RRT* does not 
consider such problems and has difficulty in 
specifying complex tasks with temporal logic 
constraints for a robot. Symbolic motion planning 
(SMP) synchronizes task specifications with 
transition systems of robots to provide provably 
correct solutions to high-level goals in a discretized 
workspace [4]. Many centralized and decentralized 
frameworks have been developed for multi-robot 
system (MRS) SMP with model checking 
techniques. These works focused on reducing the 
computational complexity either with top-down or 
bottom-up strategy [7-9]. Correct task or motion 
planning solutions can be obtained from the model 

checking results of the SMP. However, limited 
amount of work deals with the problem of task 
assignment into robot.  

On the other hand, there has been a lot of recent 
attention on trust-based decision-making for 
evaluating the trustworthiness of robot’s behavior 
in human robot collaboration systems [10-15, 19, 
20]. These evaluations aim to improve the robot 
performance or robots’ physical behaviors in the 
human robot interaction process. However, they do 
not consider the selection of most trustworthy 
solution among multiple qualified task or motion 
planning solutions. Except our first attempt in [5, 
6], there generally lacks discussion on the 
trustworthiness of task and motion plans in SMP 
scenarios with humans-in-the-loop, not to mention 
its application in multi-robot bounding overwatch. 

In this paper, we propose to develop a SMP 
framework and computational trust models for 
MRS to select overwatch points in accomplishing 
complex missions. The complex missions are 
nontrivial robot motion planning tasks and 
associated with temporal logic requirements, which 
are more than travelling from one position to 
another. The proposed SMP framework will 
provide a decentralized approach for heterogeneous 
MRS to collaboratively achieve the complex 
missions with application to bounding overwatch. 
Compared to extant approaches, our proposed 
framework will improve computation efficiency 
and concurrency of temporal logics constrained 
complex mission execution. The proposed 
computational trust model for MRS will evaluate 
the trustworthiness of the decision-making of each 
robot team in selecting the bounding overwatch 
points. The trust model accommodates robot and 
environment uncertainties that affect human trust in 
MRS autonomous task performing. It takes into 
account a set of concrete factors (e.g., the 
traversability and line of sight of each robot) for the 
nontrivial robot planning tasks. The association of 
computation trust model with the SMP will 
generate the most trustworthy bounding overwatch 
task and motion plans of MRS.   

Figure 1: The bounding and overwatch process of a two-
robot team in a terrain. Black landmarks are the desired 
destinations that robot team needs to visit. Red sectors are 
the potential static adversaries and their detection ranges. 
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2. FRAMWORK OF TRUST-BASED SMP 
FOR MRS BOUNING OVERWATCH 

Assume that a set of complex motion tasks are 
assigned to multiple teams of heterogeneous robots 
in a mission domain. Each task is associated with 
the exploration of a key fort in the domain. The 
tasks are also subject to temporal logic constraints, 
which give the rules regarding how the tasks can be 
achieved in a reasonable timeline. The task 
specification with temporal logic constraints can be 
described by the following formulae in Def. 1. 

Definition 1. (LTL Specification [16]) A linear 
temporal logic (LTL) formula 𝜑𝜑  is formed from 
atomic propositions, propositional logic operators, 
and temporal operators according to the grammar 
𝜑𝜑 ∷= 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 | 𝜋𝜋 | ¬𝜑𝜑 | 𝜑𝜑1 ∨ 𝜑𝜑2 | ◯𝜑𝜑 | 𝜑𝜑1𝑈𝑈𝜑𝜑2, 
where 𝜑𝜑 is an atomic proposition, ¬ (negation) and 
∨  (disjunction) are Boolean operators, and ◯ 
(next) and 𝑈𝑈 (until) are temporal operators. 

More expressive operators can be constructed 
from the above operators, such as, conjunction: 
𝜑𝜑1 ∧ 𝜑𝜑2 = ¬(¬𝜑𝜑1 ∨ ¬𝜑𝜑2) , eventually: ◊ 𝜑𝜑 =
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑈𝑈 𝜑𝜑, and always: ◻𝜑𝜑 =  ¬ ◊ ¬𝜑𝜑. 

LTL formula can describe a high-level bounding 
overwatch task specification constrained by 
temporal logic. For example, we can use the LTL 
formula “◊◻ 𝜋𝜋” to describe the task specification 
for a bounding overwatch task that “finally always 
explore the target fort in a mission domain”. Here, 
𝜋𝜋 is the atomic proposition – “exploring the target 
fort”. Similarly, regular expression (RE) formulae 
can also denote the temporal logic constrained 
tasks. 

Definition 2. (Regular Expression [16]) A 
regular expression (RE) over an alphabet Φ is 
defined as follows: (i) 𝜀𝜀,𝜙𝜙1,𝜙𝜙2 ∈ 𝛷𝛷 are called the 
primitive REs; (ii) the concatenation (𝜙𝜙1 · 𝜙𝜙2) , 
union (𝜙𝜙1 + 𝜙𝜙2) , and Kleene star (𝜙𝜙1∗ ) are the 
operations of REs; (iii) A string 𝜙𝜙 is a RE if and 
only if  it can be derived from the primitive REs 

with finite numbers of application of the operations 
in (ii). 

The LTL specification or RE formula can also be 
converted to an automaton format, which has the 
states and transitions, and is more expressive. 

Definition 3. (Deterministic Finite Automaton 
[16]) A deterministic finite automaton (DFA) is a 
tuple described as 𝐺𝐺  = (𝑋𝑋,𝐸𝐸,𝑓𝑓, 𝑥𝑥0,𝑋𝑋𝐹𝐹), where 𝑋𝑋 
is the sate set, 𝐸𝐸 is the event set, 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥’ is the 
transition relation with 𝑥𝑥, 𝑥𝑥′ ∈ 𝑋𝑋, 𝑡𝑡 ∈ 𝐸𝐸 , 𝑥𝑥0  is the 
initial state, and 𝑋𝑋𝐹𝐹 is the final state set. A path of 
𝐺𝐺, denoted by 𝜌𝜌 = 𝑡𝑡(0) ⋯𝑡𝑡(𝜏𝜏) ⋯𝑡𝑡(𝑇𝑇), is a sequence 
of events satisfying 𝑓𝑓(𝑥𝑥0,𝜌𝜌) ∈ 𝑋𝑋𝐹𝐹, where 𝑡𝑡(𝜏𝜏) ∈ 𝐸𝐸. 
The language generated by an automaton G is 
𝐿𝐿(𝐺𝐺) = {𝜌𝜌 ∈ 𝐸𝐸∗| 𝑓𝑓(𝑥𝑥0,𝜌𝜌) ∈ 𝑋𝑋𝐹𝐹}.  

The language of the DFA enumerates all the task 
performing processes in a string format. 

Example 1. Consider an example task 
specification - “first repeatedly visit fort 𝑝𝑝1 at least 
once, then visit fort 𝑝𝑝2 or 𝑝𝑝3”. The RE formula is 
𝑝𝑝1𝑝𝑝1∗(𝑝𝑝2 + 𝑝𝑝3) , while the LTL formula is 𝑝𝑝1 ∧
◯�𝑝𝑝1𝑈𝑈(𝑝𝑝2 ∨ 𝑝𝑝3)�. The equivalent automaton 𝐺𝐺  =
(𝑋𝑋,𝐸𝐸,𝑓𝑓, 𝑥𝑥0,𝑋𝑋𝐹𝐹) can be shown in Fig 2. The state set 
is 𝑋𝑋 = {0,2,5}. The event set is 𝐸𝐸 = {𝑝𝑝1,𝑝𝑝2,𝑝𝑝3}. 
The transition relation is listed as 𝑓𝑓(0,𝑝𝑝1) =
2, 𝑓𝑓(2, 𝑝𝑝1) = 2,𝑓𝑓(2,𝑝𝑝2) = 5,𝑓𝑓(2,𝑝𝑝3) = 5. State 0 
is the initial state 𝑥𝑥0, 5 is the final state 𝑋𝑋𝐹𝐹. 

 

 
Definition 4. (Capability Markov Decision 

Process (MDP) Model of Robot Team [8]) Given 
an indexed robot team 𝑡𝑡𝑛𝑛 ∈ 𝑅𝑅  with an abstracted 
state set 𝑆𝑆𝑛𝑛, and each state 𝑠𝑠 ∈ 𝑆𝑆𝑛𝑛  describes a local 
task performing state that robot team 𝑡𝑡𝑛𝑛  is 

Figure 2: Equivalent automaton of regular expression 
𝑝𝑝1𝑝𝑝1∗(𝑝𝑝2 + 𝑝𝑝3) and LTL 𝑝𝑝1 ∧◯�𝑝𝑝1𝑈𝑈(𝑝𝑝2 ∨ 𝑝𝑝3)�.  
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exploring the target fort. The bounding overwatch 
task execution of robot team 𝑡𝑡𝑛𝑛  in a specific 
environment can be constructed as the MDP tuple 

𝑇𝑇𝐸𝐸𝑛𝑛 ≔ �𝑆𝑆𝑛𝑛,𝐴𝐴𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑠𝑠0,𝑛𝑛,𝐴𝐴𝑃𝑃𝑛𝑛,ℒ𝑛𝑛,𝑊𝑊𝑛𝑛�, 
where 𝐴𝐴𝑛𝑛  is an action set of the robot team; 
𝛿𝛿𝑛𝑛: 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛 × 𝑆𝑆𝑛𝑛 → [0,1]  describes the transition 
probability of robot team from state 𝑠𝑠 ∈ 𝑆𝑆𝑛𝑛, to state 
𝑠𝑠′ ∈ 𝑆𝑆𝑛𝑛  by executing an action 𝛼𝛼 ∈ 𝐴𝐴𝑛𝑛 (i.e., the 
probability of robot team exploring from a 
destination fort to another by executing an action), 
and 𝛿𝛿𝑛𝑛(𝑠𝑠,α, 𝑠𝑠′) = 𝑃𝑃𝑡𝑡(𝑠𝑠′|𝑠𝑠, α) ; 𝑠𝑠0,𝑛𝑛 ∈ 𝑆𝑆𝑛𝑛  is the 
initial state; 𝐴𝐴𝑃𝑃𝑛𝑛 is the set of atomic propositions of 
a set of task specifications; ℒ𝑛𝑛: 𝑆𝑆𝑛𝑛 → 2𝐴𝐴𝑃𝑃𝑛𝑛  labels 
the robot states with the propositions derived from 
𝐴𝐴𝑃𝑃𝑛𝑛; and 𝑊𝑊𝑛𝑛: 𝑆𝑆𝑛𝑛 × 𝐴𝐴𝑛𝑛 → 𝑅𝑅+ is the weight set. 

In general, the process of the robot team exploring 
a specific fort is abstracted as a task performing 
state of the MDP. The MDP regulates the transition 
of an abstracted state with an action and labels the 
property of each abstracted state with predefined 
atomic propositions.  

Example 2. Fig. 3. gives a graph representation of 
the MDP model of a robot team. States 𝑠𝑠1, 𝑠𝑠2 and 
𝑠𝑠3 are the task performing states representing the 
robot team is exploring 𝑝𝑝1,𝑝𝑝2 and 𝑝𝑝3 respectively. 
State 𝑠𝑠ϵ  is the idle state that the robot team is 
moving but not targeting for any fort, while state 𝑠𝑠𝑓𝑓 
is the failure state that the robot team fails to move 
towards a desired fort with the corresponding 
action. The atomic propositions 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝𝑓𝑓 and 𝜀𝜀 
label the corresponding states in the figure. 

 

 

The defined MDP model of the robot team will 
need to be verified whether it can satisfy the 
bounding overwatch task specification. The 
verification results may be multiple task plans that 
can satisfy the task specification. Then, the most 
reliable task plan will need to be selected by 
referring to concrete metrics such as robot 
travelling distance, time and performance.  

On the other hand, human-robot trust can be 
interpreted as the willingness of human to accept 
robot-produced information and robot’s 
suggestions, thus to benefit from the advantages 
inherent in robotic systems, to assign tasks to robot, 
or to provide support to robot [21,22]. The 
impacting factors influencing human trust in robot 
can be categorized into the robot-related ones, such 
as robot performance and attribute, the 
environment-related ones, including feature of task 
environment and form of collaboration, and the 
human-related ones, such as human ability and 
characteristic.  

For the bounding overwatch task considered in 
this paper, trust will mainly be used to evaluate the 
trustworthiness of the overwatch team members at 
a location in covering its remaining members that 
advance to the next bounding overwatch point. 
Therefore, a reliable bounding overwatch plan of 
the robot team to a key fort here will consider multi-
dimensional metrics, such as line of sight and 
traversability, which affect the successful 
implementation of the task plan. We formulate the 
following problem.  

(Problem Setup) Given multiple teams of 
heterogeneous robots for a bounding overwatch 
scenario. Let each robot team be associated with a 
capability MDP as defined in Def. 4 describing its 
bounding overwatch constraints in the 
environment. Develop a framework that can (1) 
guarantee a provably correct task plan for all the 
robot teams to satisfy a set of motion task 
specifications requested from human users; and (2) 
assign each robot team to satisfy the task plans with Figure 3: MDP model of the robot team in 

environment shown in Fig.1. 
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the highest trust level in performing the bounding 
overwatch task.  

We propose the framework shown in Fig. 4 to 
solve the problem. More specifically, we will first 
use LTL, RE formulae or directly DFAs to describe 
the high-level global task specifications of multi-
robot bounding overwatch in a terrain (see step 1). 
A parallel task decomposition process will first 
decompose the automaton (Def. 3) of the global 
task specification into parallel subtask automata 
(step 2). Thus, each parallel subtask automaton can 
be satisfied by a robot team independently and 
hence it improves the concurrency and efficiency of 
global task performing. Model checking techniques 
are used to synthesize the task plans satisfying each 
subtask automaton and capability MDP (Def. 4) of 
the robot team. The synthesized task plans are then 
combined with a discrete motion MDP (Def. 6) of 
each team to obtain the task and motion planning 
MDP (Def. 7) of the robot team (step 3). In the 
meantime, a dynamic computational trust model 
will be developed to evaluate robot trustworthiness 
in every bounding overwatch step. The trust of each 
robot team will be integrated with the task and 
motion planning MDP (step 4). Then, the most 
trustworthy bounding overwatch paths will be 
explored for each robot team to reach the desired 
key forts (step 5). Motion trajectories are then 
generated for each robot (step 6).  

 

 
 

3. TASK PLANNING FOR ROBOT TEAM 
BOUNDING OVERWATCH 

In general, task requirements can be described by 
a variety of grammas [23]. In this paper, we require 
a human supervisor to provide a task specification 
in an LTL or RE format, which is relatively easier 
for human to formulate the task requirement and 
can be converted into the automaton [24]. More 
user-friendly grammars maybe developed for 
human supervisors so that they can describe and 
input their requirements [23].  

The task specification in LTL or RE format is 
verified for the satisfaction of each robot team’s 
capability in Def. 4. As the task specification 
mainly involves the reachability of task 
specification, we focus on the guarantee format of 
LTL for the task specification [18]. On the other 
side, we also aim to achieve the completion of local 
tasks in parallel processes with MRS, which 
improves the concurrency and efficiency of overall 
bounding overwatch. 
3.1. Global Task Specification and Parallel 

Subtasks of Bounding Overwatch 
User can assign multiple RE, LTL and DFA 

described bounding overwatch tasks for the robot 
teams. An overview of the temporal logic relation 
among and inside all these tasks can be achieved 
with a global task DFA, which can be synthesized 
with the regular language operations of the set of 
converted DFAs from each RE and LTL formula 
[17]. In this paper, we represent a synthesized 
global DFA of all the task specifications with 𝐺𝐺𝑔𝑔 =
�𝑋𝑋𝑔𝑔,𝐸𝐸𝑔𝑔,𝑓𝑓𝑔𝑔, 𝑥𝑥0,𝑔𝑔,𝑋𝑋𝐹𝐹,𝑔𝑔�  according to Def. 3. This 
global automaton describes all the bounding 
overwatch task plans satisfying human supervisor’s 
input. Each robot team set is configured such that 
2𝐴𝐴𝑃𝑃𝑛𝑛 ⊇ 𝐸𝐸𝑔𝑔. 

We aim to decompose the global bounding 
overwatch task specification 𝐺𝐺𝑔𝑔  into multiple 
parallel processes, which can improve the task 
performing concurrency. In [6], an iterated 
automaton decomposition algorithm is developed 

Figure 4: Flowchart of trust based SMP for MRS 
bounding overwatch.  
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to decompose a global task DFA 𝐺𝐺𝑔𝑔 into a unique 
set of smallest subtask automata 𝐺𝐺1,⋯ ,𝐺𝐺𝑛𝑛,⋯ ,𝐺𝐺𝑁𝑁, 
𝑛𝑛 = 1,⋯ ,𝑁𝑁. We adapt this algorithm here to the 
multi-robot bounding overwatch task for team 
allocation. As a result, we will have multiple 
parallel subtask automata 𝐺𝐺1,⋯ ,𝐺𝐺𝑛𝑛,⋯ ,𝐺𝐺𝑁𝑁, which 
contain all the task plans to be performed in parallel 
processes. Then, the MRS can perform the assigned 
tasks in parallel processes instead of in a single 
process.  

 
3.2. Validated Task Performing Plans of 

Bounding Overwatch 
Assume each subtask automaton 𝐺𝐺𝑛𝑛 ≔
�𝑋𝑋𝑛𝑛,𝐸𝐸𝑛𝑛,𝑓𝑓𝑛𝑛, 𝑥𝑥0,𝑛𝑛,𝑋𝑋𝐹𝐹,𝑛𝑛�. Each subtask automaton 𝐺𝐺𝑛𝑛 
is assigned to a robot team 𝑡𝑡𝑛𝑛 with the capability 
MDP 𝑇𝑇𝐸𝐸𝑛𝑛 ≔ �𝑆𝑆𝑛𝑛,𝐴𝐴𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑠𝑠0,𝑛𝑛,𝐴𝐴𝑃𝑃𝑛𝑛,ℒ𝑛𝑛,𝑊𝑊𝑛𝑛�  to 
satisfy the described local tasks. Here, the 
capability MDP model of the robot team satisfies 
the prerequisite that 2𝐴𝐴𝑃𝑃𝑛𝑛 ⊇ 𝐸𝐸𝑛𝑛 . Then, we can 
synthesize a product MDP to obtain the validated 
task plans for the complex high-level bounding 
overwatch task. 

Definition 5 (Bounding Overwatch Product 
MDP) Given a subtask automaton 𝐺𝐺𝑛𝑛 ≔
�𝑋𝑋𝑛𝑛,𝐸𝐸𝑛𝑛,𝑓𝑓𝑛𝑛, 𝑥𝑥0,𝑛𝑛,𝑋𝑋𝐹𝐹,𝑛𝑛�  describing the high-level 
bounding overwatch task specification, a robot 
team 𝑅𝑅𝑛𝑛 is modeled with an MDP 𝑇𝑇𝐸𝐸𝑛𝑛 ≔
�𝑆𝑆𝑛𝑛,𝐴𝐴𝑛𝑛, 𝛿𝛿𝑛𝑛, 𝑠𝑠0,𝑛𝑛,𝐴𝐴𝑃𝑃𝑛𝑛,ℒ𝑛𝑛,𝑊𝑊𝑛𝑛�  describing the 
team’s constraints in satisfying bounding 
overwatch task. A product MDP 𝑇𝑇𝐸𝐸𝑛𝑛 × 𝐺𝐺𝑛𝑛 ≔
�𝑆𝑆𝑛𝑛 × 𝑋𝑋𝑛𝑛,𝐴𝐴𝑛𝑛, 𝛿𝛿𝑛𝑛′ , �𝑠𝑠0,𝑛𝑛,𝑥𝑥1,𝑛𝑛�,ℒ𝑛𝑛′ ,𝐴𝐴𝑃𝑃𝑛𝑛,𝑊𝑊𝑛𝑛

′�  can be 
synthesized to present the validated results of task 
plans satisfying the task specification, where the 
state set 𝑆𝑆𝑛𝑛 × 𝑋𝑋𝑛𝑛  contains the robot and task 
completion states; the action set is 𝐴𝐴𝑛𝑛 ; the 
transition function 𝛿𝛿𝑛𝑛′ �(𝑠𝑠𝑛𝑛, 𝑥𝑥𝑛𝑛),𝑎𝑎𝑛𝑛, (𝑠𝑠𝑛𝑛′ , 𝑥𝑥𝑛𝑛′ )� 
describes the transition probability from state 
(𝑠𝑠𝑛𝑛, 𝑥𝑥𝑛𝑛)  to state (𝑠𝑠𝑛𝑛′ , 𝑥𝑥𝑛𝑛′ )  with action 𝑎𝑎𝑛𝑛 , 
𝑃𝑃𝑡𝑡�(𝑠𝑠𝑛𝑛′ , 𝑥𝑥𝑛𝑛′ )�(𝑠𝑠𝑛𝑛, 𝑥𝑥𝑛𝑛),𝑎𝑎𝑛𝑛� ≠ 0 if ∃𝑠𝑠𝑛𝑛

𝑎𝑎𝑛𝑛�� 𝑠𝑠𝑛𝑛′  and 𝑥𝑥𝑛𝑛
𝐿𝐿�𝑠𝑠𝑛𝑛′ ��⎯⎯� 𝑥𝑥𝑛𝑛′ ; the initial state is �𝑠𝑠0,𝑛𝑛, 𝑥𝑥1,𝑛𝑛�  if ∃𝑥𝑥0,𝑛𝑛  

𝐿𝐿�𝑠𝑠0,𝑛𝑛��⎯⎯⎯� 𝑥𝑥1,𝑛𝑛 ; the label relation ℒ𝑛𝑛′ : 𝑆𝑆𝑛𝑛 × 𝑋𝑋𝑛𝑛 → 2𝐴𝐴𝑃𝑃𝑛𝑛 
satisfies ℒ𝑛𝑛′ (𝑠𝑠𝑛𝑛, 𝑥𝑥𝑛𝑛) = 𝐿𝐿𝑛𝑛(𝑠𝑠𝑛𝑛); and 𝑊𝑊𝑛𝑛

′: 𝑆𝑆𝑛𝑛 × 𝑋𝑋𝑛𝑛 ×
𝐴𝐴𝑛𝑛 × 𝑆𝑆𝑛𝑛 × 𝑋𝑋𝑛𝑛 → 𝑅𝑅+ is the weight set. 

We can obtain 𝑁𝑁  bounding overwatch product 
MDPs 𝑇𝑇𝐸𝐸𝑛𝑛 × 𝐺𝐺𝑛𝑛 for a high-level task specification 
if provided with enough robot teams. Each product 
MDP presents all the validated task performing 
plans of bounding overwatch that can be 
implemented by the corresponding robot team 
independently. 

 
4. TRUST ASSOCIATED MOTION 
PLANNING FOR ROBOT BOUNDING 
OVERWATCH 

In Section 3, we obtained the bounding overwatch 
product MDPs that present all the validated task 
plans satisfying the task specification. Each task 
plan contains a sequence of bounding overwatch 
task performing states of a robot team. In this 
section, we aim to generate the most reliable task 
plan for the bounding overwatch of each robot team 
based on trust evaluation for each robot team’s 
behavior. The successive bounding overwatch 
method is considered, i.e., the overwatch members 
will only need to reach the same region as that of 
the advance members in each bounding overwatch 
step. This method of bounding overwatch eases the 
control of cooperation between the team members. 
Then, the path planning of a robot team bounding 
overwatch can be regarded as equivalent to the 
planning for each single robot inside the team. 

 
4.1. Motion Discretization of Robot Team 

Bounding Overwatch 
We discretize the mission environment into cells 

after considering the constraints of robot size, robot 
sensing range as well as the terrain height. A single 
step of successive bounding overwatch process is 
conducted between a cell and one of its neighboring 
cells. This guarantees that the overwatch robot is 
always within the line of the sight of the bounding 
robot and hence the bounding robot can follow the 
overwatch robot. As a result, the exploration 
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between two key forts can be decomposed into a 
sequence of bounding overwatch steps among the 
discretized cells. We abstract the motion process of 
each robot team 𝑡𝑡𝑛𝑛 among these cells as a discrete 
motion MDP 𝑇𝑇𝑀𝑀𝑛𝑛.   

Definition 6. (Discrete Motion MDP) Given a 
discretized environment 𝐶𝐶𝑛𝑛 , construct a discrete 
motion MDP 𝑇𝑇𝑀𝑀𝑛𝑛 for each robot team, 

𝑇𝑇𝑀𝑀𝑛𝑛 = (𝐶𝐶𝑛𝑛,𝐴𝐴𝑛𝑛𝑐𝑐 , 𝛿𝛿𝑛𝑛𝑐𝑐,ℒ𝑛𝑛𝑐𝑐 , 𝑆𝑆𝑛𝑛,𝑅𝑅𝑛𝑛) 
where the state set 𝐶𝐶𝑛𝑛 contains all the discretized 
cells that robot team can advance to; the action set 
𝐴𝐴𝑛𝑛𝑐𝑐  contains all the actions that the robot team can 
take when deciding which neighboring cell it will 
advance to; the transition function 𝛿𝛿𝑛𝑛𝑐𝑐(𝑐𝑐𝑛𝑛,𝑎𝑎𝑛𝑛𝑐𝑐 , 𝑐𝑐𝑛𝑛′ ) =
𝑃𝑃𝑡𝑡𝑛𝑛(𝑐𝑐𝑛𝑛′  |𝑐𝑐𝑛𝑛, 𝑎𝑎𝑛𝑛𝑐𝑐 ) describes the transition probability 
from cell 𝑐𝑐𝑛𝑛  to 𝑐𝑐𝑛𝑛′  with action 𝑎𝑎𝑛𝑛𝑐𝑐 ∈ 𝐴𝐴𝑛𝑛𝑐𝑐 ; ℒ𝑛𝑛𝑐𝑐 :𝐶𝐶𝑛𝑛 →
𝑆𝑆𝑛𝑛 labels whether each cell is the destination of the 
robot team’s task performing state; the reward 
function 𝑅𝑅𝑛𝑛:𝐶𝐶𝑛𝑛 × 𝐴𝐴𝑛𝑛𝑐𝑐 → 𝑅𝑅+  quantifies the 
reliability of a transition with a value. 

Example 3. A terrain can be discretized in the 
planner view as shown in Fig. 5. Each cell size 
sensing range of a robot. These cells are also 
labelled regarding whether they contain a 
destination fort. Reward function estimates the 
reliability of transition for a robot team from one 
cell to neighboring cell. 

   

 

The mission environment discretization enables 
an estimation on each small region of terrain 
regarding its trustworthiness for a robot team to 
conduct each bounding overwatch step.  

Next, we compose the discrete motion MDP 𝑇𝑇𝑀𝑀𝑛𝑛 
with the product MDP 𝑇𝑇𝐸𝐸𝑛𝑛 × 𝐺𝐺𝑛𝑛  to synthesize a 
task and motion planning MDP of robot team 
bounding overwatch. 

Definition 7. (Task and Motion Planning MDP) 
Given the product MDP 𝑇𝑇𝐸𝐸𝑛𝑛 × 𝐺𝐺𝑛𝑛  and discrete 
motion MDP 𝑇𝑇𝑀𝑀𝑛𝑛 , the composition of the two 
MDPs can be described as a task and motion 
planning MDP of a robot team bounding 
overwatch, which can be detailed as 

𝑃𝑃𝑃𝑃𝑀𝑀𝑛𝑛 = �𝑆𝑆𝑛𝑛
𝜓𝜓,𝐴𝐴𝑛𝑛

ψ,𝛿𝛿𝑛𝑛
𝜓𝜓,𝑆𝑆0,𝑛𝑛

𝜓𝜓 , 𝑆𝑆𝐹𝐹,𝑛𝑛
𝜓𝜓 ,𝐴𝐴𝑃𝑃𝑛𝑛,ℒ𝑛𝑛𝜓𝜓,𝑅𝑅𝑛𝑛

𝜓𝜓� 

where the state set is 𝑆𝑆𝑛𝑛
𝜓𝜓 = 𝑆𝑆𝑛𝑛 × 𝑋𝑋𝑛𝑛 × 𝐶𝐶𝑛𝑛 ; the 

action set is 𝐴𝐴𝑛𝑛
𝜓𝜓 = 𝐴𝐴𝑛𝑛 × 𝐴𝐴𝑛𝑛𝑐𝑐 ; the transition function 

𝛿𝛿𝑛𝑛
𝜓𝜓 �𝑠𝑠𝑛𝑛

𝜓𝜓,𝑎𝑎𝑛𝑛
𝜓𝜓, 𝑠𝑠𝑛𝑛

′𝜓𝜓� = 𝑃𝑃𝑡𝑡��𝑠𝑠𝑛𝑛′ ,𝑥𝑥𝑛𝑛′ ��(𝑠𝑠𝑛𝑛,𝑥𝑥𝑛𝑛),𝑎𝑎𝑛𝑛�×
𝑃𝑃𝑡𝑡𝑛𝑛�𝑐𝑐𝑛𝑛′  �𝑐𝑐𝑛𝑛,𝑎𝑎𝑛𝑛𝑐𝑐� describes the transition probability 
from state 𝑠𝑠𝑛𝑛

𝜓𝜓 = (𝑠𝑠𝑛𝑛, 𝑥𝑥𝑛𝑛, 𝑐𝑐𝑛𝑛)  to 𝑠𝑠𝑛𝑛
′𝜓𝜓 = (𝑠𝑠𝑛𝑛′ ,𝑥𝑥𝑛𝑛′ , 𝑐𝑐𝑛𝑛′ ) 

with action 𝑎𝑎𝑛𝑛
𝜓𝜓 = (𝑎𝑎𝑛𝑛 × 𝑎𝑎𝑛𝑛𝑐𝑐); the initial state set is 

𝑆𝑆0,𝑛𝑛
𝜓𝜓 =  {�𝑠𝑠0,𝑛𝑛,𝑥𝑥1,𝑛𝑛�} × 𝐶𝐶𝑛𝑛 ; the accepted state set  

is 𝑆𝑆𝐹𝐹,𝑛𝑛
𝜓𝜓 =  𝑆𝑆𝑛𝑛 × 𝑋𝑋𝐹𝐹,𝑛𝑛 × 𝐶𝐶𝑛𝑛 ; the proposition set is 

𝐴𝐴𝑃𝑃𝑛𝑛
𝜓𝜓 = 𝐴𝐴𝑃𝑃𝑛𝑛′ × 𝑆𝑆𝑛𝑛; the labeled relation is ℒ𝑛𝑛

𝜓𝜓: 𝑆𝑆𝑛𝑛
𝜓𝜓  →

𝐴𝐴𝑃𝑃𝑛𝑛
𝜓𝜓 ; and the reward function 𝑅𝑅𝑛𝑛

𝜓𝜓(𝑠𝑠𝑛𝑛
𝜓𝜓,𝑎𝑎𝑛𝑛

𝜓𝜓 , 𝑠𝑠𝑛𝑛
′𝜓𝜓) 

returns a probabilistic value for a transition from 
state 𝑠𝑠𝑛𝑛

𝜓𝜓 to state 𝑠𝑠𝑛𝑛
′𝜓𝜓 with action 𝑎𝑎𝑛𝑛

𝜓𝜓. 
Given a state transition from time step 𝑘𝑘 to 𝑘𝑘 + 1, 

we can estimate the reward 𝑅𝑅𝑛𝑛
𝜓𝜓�𝑠𝑠𝑛𝑛

𝜓𝜓,𝑘𝑘,𝑎𝑎𝑛𝑛
𝜓𝜓,𝑘𝑘, 𝑠𝑠𝑛𝑛

𝜓𝜓,𝑘𝑘+1� 
with a predicted trust value at state 𝑠𝑠𝑛𝑛

𝜓𝜓,𝑘𝑘+1 . The 
predicted trust value at state 𝑠𝑠𝑛𝑛

𝜓𝜓,𝑘𝑘+1 here can reflect 
the trustworthiness of a decision made by a robot 
team in the bounding overwatch task from state 
𝑠𝑠𝑛𝑛
𝜓𝜓,𝑘𝑘 =  (𝑠𝑠, 𝑥𝑥, 𝑐𝑐)𝑘𝑘  to 𝑠𝑠𝑛𝑛

𝜓𝜓,𝑘𝑘+1 =  (𝑠𝑠, 𝑥𝑥, 𝑐𝑐)𝑘𝑘+1 . The 
computation of the predicted trust value is 
introduced in the following subsection. 

 

Figure 5: Discretized mission environment of Fig. 1. 
Each cell can be quantified by the arrangement of image 
intensities value to describe the traversability and by the 
image variance value to describe the line of sight. 
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4.2. Trust Evaluation of Robot Team 
Bounding Overwatch 

In this paper, we aim to obtain a trustworthy 
bounding overwatch process by considering the 
influence of terrain and exposure to potential 
adversaries on bounding overwatch. Therefore, we 
evaluate the traversability of robots in a terrain to 
estimate the influence of terrain on each robot team. 
The line of sight situation of each robot in the 
environment is utilized to estimate the capability of 
detecting risks of each team exposure to potential 
adversaries. 

We use 𝑔𝑔(𝒚𝒚) to estimate the traversability cost of 
a given robot at a Cartesian position 𝒚𝒚 = [𝑦𝑦1,𝑦𝑦2]⊤ 
in the x-y plane. The traversability of the robot can 
be related to the terrain height, terrain texture, and 
mechanical limitations of the robot. In this paper, 
we assume homogeneous robots and associate the 
image intensities and image texture property value 
of each pixel in the height map with the 
corresponding position to evaluate traversability. 
Higher image intensity and image texture property 
value of a position indicates a tougher terrain for 
the motion of the robot team. We assume the 
traversability of a Δ × Δ  pixels cell 𝑐𝑐  follows a 
normal distribution 𝑔𝑔(𝑐𝑐) ∼ 𝑁𝑁�𝑔𝑔𝑐𝑐, 𝜁𝜁c,1�, where 𝑔𝑔𝑐𝑐 
is the mean value of the traversability costs of all 
the pixels in cell 𝑐𝑐, and 𝜁𝜁𝑐𝑐 is the variance.  

The line of sight of a cell can affect the sensing of 
the robot for surrounding environment and 
adversaries, which is related to the exposure risks 
of the robot team. The line of sight can be estimated 
with terrain height and sensing range of the robot. 
Here, we associate an image variance value of the 
sensing range of a robot at each position 𝒚𝒚  to 
evaluate line of sight. Assume the image variance 
of the sensing range centered at a pixel follows a 
normal distribution σ(𝑐𝑐) ∼ 𝑁𝑁�σ𝑐𝑐, 𝜁𝜁c,2� in the Δ ×
Δ size cell of the height map. A higher mean value 
of the image variance of a cell corresponds to an 
overall complex terrain, which will make it difficult 
for a given robot to sense the surrounding situation. 
Thus, the image variance of the height map can be 

used to estimate the line of sight 𝜎𝜎(𝑐𝑐) of the robot 
team at a cell 𝑐𝑐.  

Remark 1. Consider the mission environment 
shown in Fig. 5. The image intensities, image 
texture property and variance values of each 
discrete cell can be estimated based on the 2D top 
view of the map. The cell with high value of line of 
sight is favorable for a robot to detect risks but may 
have disadvantages in traversability. Therefore, it 
needs to tradeoff between line of sight and 
traversability in selecting the bounding overwatch 
path.                                                                     ● 

Given a state 𝑠𝑠𝑛𝑛
𝜓𝜓,𝑘𝑘 = (𝑠𝑠, 𝑥𝑥, 𝑐𝑐)𝑘𝑘 , denote the 

associated traversability 𝑔𝑔𝑛𝑛𝑘𝑘 = 𝑔𝑔(𝑐𝑐𝑘𝑘)  and line of 
sight 𝜎𝜎𝑛𝑛𝑘𝑘 = 𝜎𝜎(𝑐𝑐𝑘𝑘) . The associated trust value 𝜏𝜏𝑛𝑛𝑘𝑘 
can be estimated based on the two costs 𝑔𝑔𝑛𝑛𝑘𝑘, 𝜎𝜎𝑛𝑛𝑘𝑘 and 
the previous trust 𝜏𝜏𝑛𝑛𝑘𝑘−1 . Denote 𝒛𝒛𝑛𝑛𝑘𝑘 =
[𝜏𝜏𝑛𝑛𝑘𝑘−1,𝑔𝑔𝑛𝑛𝑘𝑘,𝜎𝜎𝑛𝑛𝑘𝑘]⊤ . A more interpretable linear 
relation 𝜏𝜏𝑛𝑛𝑘𝑘 = 𝜷𝜷⊤𝒛𝒛𝑛𝑛𝑘𝑘 + 𝛾𝛾𝑘𝑘  is assumed to estimate 
the trust value 𝜏𝜏𝑛𝑛𝑘𝑘  with variables 𝒛𝒛𝑛𝑛𝑘𝑘 , where 𝜷𝜷⊤ =
[𝛽𝛽0,𝛽𝛽1,𝛽𝛽2], and 𝛾𝛾𝑘𝑘 is the residue. Assume residual 
𝛾𝛾𝑘𝑘 ∼ 𝑁𝑁(0, 𝜉𝜉2) , the trust value 𝜏𝜏𝑛𝑛𝑘𝑘  conditional on 
𝜷𝜷, 𝒛𝒛𝑛𝑛𝑘𝑘  at a state 𝑠𝑠𝑛𝑛

𝜓𝜓,𝑘𝑘 satisfies 
𝜏𝜏𝑛𝑛𝑘𝑘|𝜷𝜷, 𝒛𝒛𝑛𝑛𝑘𝑘 , 𝜉𝜉2 ∼ 𝑁𝑁(𝜷𝜷⊤𝒛𝒛𝑛𝑛𝑘𝑘 , 𝜉𝜉2).             (1) 

Then, we can predict the trust at a state 𝑠𝑠𝑛𝑛
𝜓𝜓,𝑘𝑘 with a 

dynamic Bayesian network (DBN), as shown in Fig 
6. 

 

 
Assume 𝜉𝜉2  is known, 𝜷𝜷  follows a multivariate 

normal distribution, 𝜷𝜷 ∼ 𝑵𝑵(𝝁𝝁,𝜻𝜻) , and ℤ𝑛𝑛𝑘𝑘 =

Figure 6: DBN based trust evaluation on task and 
motion planning.  
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[𝒛𝒛𝑛𝑛0 , 𝒛𝒛𝑛𝑛1 ,⋯ , 𝒛𝒛𝑛𝑛𝑘𝑘]. The full distribution of a trust value 
𝜏𝜏𝑛𝑛𝑡𝑡  can be detailed as  
𝑃𝑃𝑡𝑡(𝜏𝜏𝑛𝑛𝑘𝑘,𝜷𝜷,ℤ𝑛𝑛𝑘𝑘 , 𝜉𝜉2) = 𝑃𝑃𝑡𝑡(𝜏𝜏𝑛𝑛𝑘𝑘|𝜷𝜷,ℤ𝑛𝑛𝑘𝑘 , 𝜉𝜉2)𝑃𝑃𝑡𝑡(𝜷𝜷) 

      𝑃𝑃𝑡𝑡(𝑔𝑔𝑛𝑛𝑘𝑘)𝑃𝑃𝑡𝑡(𝜎𝜎𝑛𝑛𝑘𝑘)𝑃𝑃𝑡𝑡(𝜏𝜏𝑛𝑛𝑘𝑘−1,𝜷𝜷,ℤ𝑛𝑛𝑘𝑘−1, 𝜉𝜉2).         (2) 
Thus, we can obtain 𝜏𝜏𝑛𝑛𝑘𝑘 ∼ 𝑁𝑁(𝜏𝜏�̅�𝑛𝑘𝑘, 𝜉𝜉𝑛𝑛𝑘𝑘). Accordingly, 
we can obtain the expected trust value 𝑬𝑬(𝜏𝜏𝑛𝑛𝐾𝐾) = 𝜏𝜏�̅�𝑛𝐾𝐾 
of an arbitrary path 𝜌𝜌𝑛𝑛 = 𝑠𝑠𝑛𝑛

𝜓𝜓,0 ⋯𝑠𝑠𝑛𝑛
𝜓𝜓,𝑘𝑘 ⋯ 𝑠𝑠𝑛𝑛

𝜓𝜓,𝐾𝐾.  
 
4.3. Optimal Path of MRS Bounding 

Overwatch 
The trust evaluation on a path 𝜌𝜌𝑛𝑛  estimates the 

trustworthiness of a robot team in executing a task 
and motion plan satisfying the task specification. A 
task and motion plan with higher computational 
trust value has an overall higher traversability and 
line of sight considering the linear relation between 
the trust and the impacting factors. Therefore, we 
search for the most trustworthy task and motion 
planning path from the synthesized MDP in Def 7. 
The trustworthiness of every path of the MDP will 
need to be estimated so that an optimal one can be 
finally obtained. We use the Dijkstra search 
strategy to explore the transitions of the task and 
motion planning MDP 𝑃𝑃𝑃𝑃𝑀𝑀𝑛𝑛 . At each step, we 
search for the state that has the maximum expected 
trust value, which can be evaluated with Eqn. (2). 
The algorithm is shown in Alg. 1.  
Algorithm 1. Optimal Motion Plan of MRS 
Function 𝑂𝑂𝑝𝑝𝑡𝑡𝑂𝑂𝑃𝑃𝑎𝑎𝑡𝑡ℎ(𝑃𝑃𝑃𝑃𝑀𝑀𝑛𝑛) 
1:  Set 𝑄𝑄𝑛𝑛 = 𝑆𝑆𝑛𝑛

𝜓𝜓 

2:  Initialize 𝑉𝑉�𝑠𝑠𝑛𝑛
𝜓𝜓� = 0,∀𝑠𝑠𝑛𝑛

𝜓𝜓 ∈ 𝑄𝑄𝑛𝑛 
3:  Initialize 𝜏𝜏𝑛𝑛0  
4:  Value function 𝑉𝑉(𝑠𝑠0,𝑛𝑛

𝜓𝜓 ) = −𝑬𝑬(𝜏𝜏𝑛𝑛0) 
5:  While 𝑄𝑄𝑛𝑛 is not empty: 
6:      Obtain 𝑠𝑠𝑛𝑛

𝜓𝜓 ← 𝑎𝑎𝑡𝑡𝑔𝑔𝑂𝑂𝑎𝑎𝑛𝑛𝑠𝑠𝑢𝑢,𝑛𝑛
𝜓𝜓 ∈𝑄𝑄𝑛𝑛

𝑉𝑉�𝑠𝑠𝑢𝑢,𝑛𝑛
𝜓𝜓 � 

7:      Remove 𝑠𝑠𝑛𝑛
𝜓𝜓 from 𝑄𝑄𝑛𝑛 

8:      for 𝑠𝑠𝑣𝑣,𝑛𝑛
𝜓𝜓 ∈ 𝑆𝑆𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑆𝑆𝑡𝑡𝑂𝑂𝑓𝑓�𝑠𝑠𝑛𝑛

𝜓𝜓�: 

9:          Obtain 𝒛𝒛𝑛𝑛𝑘𝑘  related to 𝑠𝑠𝑛𝑛
𝜓𝜓,𝑘𝑘 = 𝑠𝑠𝑛𝑛

𝜓𝜓 
10:        𝜏𝜏𝑣𝑣,𝑛𝑛 ← 𝜷𝜷⊤𝒛𝒛𝑛𝑛𝑘𝑘 + 𝛾𝛾𝑘𝑘 

11:          if −𝑬𝑬(𝜏𝜏𝑣𝑣,𝑛𝑛)  < 𝑉𝑉(𝑠𝑠𝑣𝑣,𝑛𝑛
𝜓𝜓 ): 

12:              Assign 𝑉𝑉(𝑠𝑠𝑣𝑣,𝑛𝑛
𝜓𝜓 ) = −𝑬𝑬(𝜏𝜏𝑣𝑣,𝑛𝑛)  

13:              𝑃𝑃𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑆𝑆𝑡𝑡𝑂𝑂𝑓𝑓(𝑠𝑠𝑣𝑣,𝑛𝑛
𝜓𝜓 )  =  𝑠𝑠𝑛𝑛

𝜓𝜓 
14:          end if 
15:      end for 
16:  end While 
17:  Obtain 𝑠𝑠𝐹𝐹,𝑛𝑛

𝜓𝜓 ← 𝑎𝑎𝑡𝑡𝑔𝑔𝑂𝑂𝑎𝑎𝑛𝑛𝑠𝑠𝐹𝐹,𝑛𝑛
𝜓𝜓 ∈𝑄𝑄𝑛𝑛

𝑉𝑉�𝑠𝑠𝐹𝐹,𝑛𝑛
𝜓𝜓 � 

18:  Initialize 𝜌𝜌𝑛𝑛 = [ ], 𝑠𝑠𝑛𝑛
𝜓𝜓 = 𝑠𝑠𝐹𝐹,𝑛𝑛

𝜓𝜓  

19:  While ∃𝑃𝑃𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑆𝑆𝑡𝑡𝑂𝑂𝑓𝑓�𝑠𝑠𝑛𝑛
𝜓𝜓� ∨ 𝑠𝑠𝑛𝑛

𝜓𝜓 = 𝑠𝑠0,𝑛𝑛
𝜓𝜓 : 

20:      Update 𝜌𝜌𝑛𝑛 = [𝜌𝜌𝑛𝑛 𝑠𝑠𝑛𝑛
𝜓𝜓] 

21:      Update 𝑠𝑠𝑛𝑛
𝜓𝜓  = 𝑃𝑃𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑆𝑆𝑡𝑡𝑂𝑂𝑓𝑓(𝑠𝑠𝑛𝑛

𝜓𝜓) 
22:  end While 
23:  return 𝜌𝜌𝑛𝑛 
The most trustworthy path is a sequence of 

discrete cells 𝑐𝑐  for the robot team to advance to. 
Trajectory of each robot can be synthesized based 
on the sequence of discrete cells given an 
omnidirectional mobile robot. The robots always 
seek to reach the centroid of the next adjacent cell 
in the discrete path. This guarantees the robots will 
always explore the planned region while moving 
between adjacent regions in the planned path. 
 
5. ROS GAZEBO SIMULATION OF MRS 
BOUNDING OVERWATCH 

We simulate the trust based SMP framework for 
MRS bounding overwatch in a terrain shown in Fig. 
7, where 𝐹𝐹1 − 𝐹𝐹6 are the six forts of interest for the 
bounding overwatch task. A complicated task 
specification needs to be satisfied: (1) “advance to 
fort 𝐹𝐹3 first, then conquer 𝐹𝐹4 or 𝐹𝐹2”; (2) “advance 
to 𝐹𝐹4  first, then conquer 𝐹𝐹3 ”; (3) “conquer 𝐹𝐹6 
after either requirement (1) or (2) is completed”.  
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Task requirements (1) and (2) can be easily 

described with RE 𝑓𝑓3(𝑓𝑓4 + 𝑓𝑓2) and 𝑓𝑓4𝑓𝑓3 , 
respectively. They can also be converted to their 
equivalent DFAs. The global view of the three task 
requirements can be described with the automaton 
operation on these DFA, shown in Fig. 8. We also 
add a backward transition at state 3 considering that 
it may need to advance back to 𝐹𝐹3 or 𝐹𝐹4 in case of 
any accidents. 

The decomposability of global task DFA 𝐺𝐺𝑔𝑔  is 
verified according to the algorithm introduced in 
Sec. 3.1. The decomposition results are subtask 
automata 𝐺𝐺1 and 𝐺𝐺2 shown in Fig. 8 (right). They 
are two parallel subtask automata that can be 
satisfied in two independent processes.  

 

 
Therefore, we configure two robot teams, each 

consisted of two Summit-XL robots shown in Fig. 
7, to complete the bounding overwatch task in 
parallel. As shown in Fig. 7, we label the robot 
teams as red and blue, respectively. The two robot 
teams are given by the following capability MDPs 

in Fig. 9, which describe their constraints of task 
capability in the terrain according to Def. 4. The 
MDP 𝑇𝑇𝐸𝐸1  is for red robot team, while 𝑇𝑇𝐸𝐸2 is for 
blue robot team. Each state 𝑠𝑠𝑖𝑖 of 𝑠𝑠1 − 𝑠𝑠6 represents 
the corresponding robot team is exploring for the 
destinated fort 𝐹𝐹𝑖𝑖 . State 𝑠𝑠𝜀𝜀  represents the roaming 
state without targeting any fort, while state 𝑠𝑠𝑓𝑓 
denotes the error state that robot team fails to work. 
Atomic propositions 𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 and 𝜀𝜀 label each state 
so that the MDPs can be related with the task 
specifications.  

 

 
A provably correct task plan in the current 

environment can be obtained from the bounding 
overwatch product MDP that is synthesized with 
subtask automaton 𝐺𝐺𝑛𝑛 and MDP 𝑇𝑇𝐸𝐸𝑛𝑛 of robot team 
according to Def. 5, where 𝑛𝑛 = 1,2. The transition 
description of the two product MDPs 𝑇𝑇𝐸𝐸𝑛𝑛 × 𝐺𝐺𝑛𝑛 are 
shown in Fig 10. They give the results regarding the 
task plans that can satisfy both the task 
specification and robot capability. 𝑇𝑇𝐸𝐸1 × 𝐺𝐺1 shows 
the correct task planning results that the red robot 
team can (1) explore fort 𝐹𝐹6  after the team 
completes exploring fort 𝐹𝐹3 , or (2) first enter a 
roaming state 𝑠𝑠𝜀𝜀 and then explore fort 𝐹𝐹6, after the 
team completes exploring fort 𝐹𝐹3 . The similar 
explanation works for blue team with 𝑇𝑇𝐸𝐸2 × 𝐺𝐺2 , 
i.e., either (1) visiting fort 𝐹𝐹6 after visiting fort 𝐹𝐹4 

Figure 7: Perspective view of the bounding overwatch 
terrain 

Figure 8: Automaton of the task requirements 

Figure 9: The capability MDP models of the robot 
teams for the bounding overwatch in the terrain. Note the 

directed edges between states 𝑠𝑠𝜀𝜀, 𝑠𝑠𝑓𝑓 and dashed circle 
describe that all the states in each circle can transit to 𝑠𝑠𝜀𝜀, 

𝑠𝑠𝑓𝑓with the shown transition relations. 
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or (2) entering roaming state and then visiting fort 
𝐹𝐹6, after visiting fort 𝐹𝐹4.  

 

 
The product MDPs only present the correct task 

plans for robot team to satisfy the task 
specification. Next, we discretize the environment 
and develop a motion MDP for each robot 
according to Def. 6. The graphic view is  shown as 
the discrete cells in Fig. 11. We compose the robot 
motion MDP with the product MDP. The 
traversability and line of sight of each discrete cell 
can be estimated based on the discrete environment. 
This enables the estimation on trust value of each 
state. Here, we seek to obtain a discrete path with 
highest mean trust value. We then use the Dijkstra 
algorithm in Alg. 1 to find the discrete task and 
motion plan with the maximum mean trust value 
among all the plans. We also generate the paths that 
consider best traversability, or best line of sight, 
respectively in Fig. 11 (a), (b). Here, Fig 11 (b) 
presents the map of line of sight value instead of the 
original map, and the dashed rectangle areas are the 
sensing range of each team. In addition, each cell 
with over low traversability is labelled with a cross. 

We simulated with different weights 𝜷𝜷⊤ =
[𝛽𝛽0,𝛽𝛽1,𝛽𝛽2]  of the computational trust model to 
generate the paths of bounding overwatch. Fig. 11 
(c) are the generated representative paths with 
weights𝜷𝜷 ∼ 𝑵𝑵(𝝁𝝁,𝜻𝜻) ,𝝁𝝁 = [0.27, 0.33,0.40]⊤ , 𝜻𝜻 =
[[0.01,−0.01,−0.01]; [−0.01, 0.01, 0]; [−0.01, 0, 0.01]]
. The probabilistic trust values of the two robot 
teams for their task and motion plans are evaluated 

at each step of the discrete path, as shown in Fig. 
12.  

 

 

 

 

 

 

 

F 2F 1

F 5

F 3F 6

F 4

F 2F 1

F 6

F 5

F 3

F 4

Figure 10: The product MDPs of the robot teams for 
the bounding overwatch in the terrain.  

(a) Paths providing the 
best traversability for the 
two robot teams. 

(b) Paths providing the 
best line of sight for the 
two robot teams. 

(c) The most trustworthy paths for the two robot teams, 
where the trust evaluation barely relies on the previous trust. 

Figure 11: Task and motion plans of the two robot 
teams for the bounding overwatch task in the terrain.  

Figure 12: Estimated trust values of the robot teams 
for the most trustworthy task and motion plans  
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6. CONCLUSION 
We developed a trust based SMP framework for 

MRS to satisfy complex bounding overwatch tasks 
constrained by temporal logics. It aims to satisfy a 
bounding overwatch task specification in safe and 
reliable approach. Multiple task and motion 
planning MDPs were first generated to guarantee 
both correctness and parallel execution of the 
complex bounding overwatch tasks by the MRS. A 
computational trust model was then constructed 
with the traversability and line of sight of robots in 
the mission terrain. The trust evaluation was 
integrated into the task and motion MDP and 
utilized to predict the trustworthiness of each robot 
team’s potential behavior in executing a task plan. 
The most trustworthy task and motion plan is 
explored with a customized Dijkstra searching 
algorithm. The task and motion plan presented a 
reliable MRS bounding overwatch process which 
trades off the traversability and safety of robot 
motion in a terrain.  
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